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a b s t r a c t

We introduce the concept of cooperative (COOP) pulses which are designed to compensate each other’s
imperfections. In multi-scan experiments, COOP pulses can cancel undesired signal contributions, com-
plementing and generalizing phase cycles. COOP pulses can be efficiently optimized using an extended
version of the optimal-control-based gradient ascent pulse engineering (GRAPE) algorithm. The advan-
tage of the COOP approach is experimentally demonstrated for broadband and band-selective pulses.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In addition to simple rectangular radio-frequency (rf) pulses
with constant amplitudes and phases, composite and shaped
pulses [1–4] are powerful tools for the manipulaton of spins in
modern NMR spectroscopy and imaging. In practice, both compos-
ite and shaped pulses are implemented as a sequence of rectangu-
lar pulses (with different amplitudes and phases) and in the
following, we will use the generic term ‘‘pulse” for both composite
or shaped pulses. Only recently has it become possible to explore
the physical limits of pulse performance [5–7] using methods from
optimal control theory [8]. For example, for a given maximum rf
amplitude and a desired bandwidth and robustness with respect
to rf inhomogeneity, there exists a minimum pulse duration T* that
is required to achieve a desired average fidelity or performance in-
dex. It is not possible for a pulse to compensate its own imperfec-
tions to the desired degree if the pulse duration is shorter than T*.
Here, we show that pulse durations can be further reduced by
allowing pulses to compensate each others imperfections. We refer
to this class of cooperatively acting pulses as COOP pulses. In multi-
scan experiments, for example, imperfections in individual scans
are irrelevant if these imperfections cancel in the total accumu-
lated signal. In many multi-scan experiments, phase cycles [9–
12] are routinely used for the suppression of artifacts or unwanted
signals: In each scan, a sequence of identical pulses is repeated, ex-
cept for a systematic phase variation of the pulses (and the recei-
ver). Here, we demonstrate that it is possible to improve the
ll rights reserved.
performance of pulse sequences by not only changing the overall
phase of a given pulse in subsequent scans, but by cycling through
a set of carefully designed COOP pulses which are in general not
identical. Highly compensating COOP cycles can be efficiently
optimized using an adapted version of the optimal-control-based
gradient ascent pulse engineering (GRAPE) algorithm [13,14].
2. Theory

2.1. Single pulse optimization

Before describing the algorithm for the simultaneous optimiza-
tion of a set of COOP pulses, we briefly review the standard opti-
mal-control-based gradient ascent algorithm for the optimization
of a single (shaped or composite) pulse.

Suppose for a given initial magnetization vector M(0) we want
to find a pulse of duration T that optimizes a defined performance
index or quality factor U, which depends only on the final magne-
tization vector M(T). In the case of an excitation pulse, for example,
we start with z magnetization, i.e. M(0) = (0,0,1)t, and a simple
quality factor could be defined as the x component of the final
magnetization [16]. A given pulse is fully characterized by the
time-dependent x and y components mx(t) = �cBrf,x(t)/2p and
my(t) = �cBrf,y(t)/2p (or alternatively by the total rf amplitude

mrf ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x ðtÞ þ m2
yðtÞ

q
and rf phase u (t) = tan�1{my(t))/mx(t)}.

We can improve the pulse if we know how the quality factor U
responds when the controls mx(t) and my(t) are varied, i.e. if we
know the gradients dU/dmx(t) and dU/dmy(t). These gradients can
be approximated using finite differences.
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The same high-dimensional gradients dU/dmx(t) and dU/dmy(t)
can efficiently be calculated to first order based on principles of
optimal control theory [8,13–16]. This approach requires calcula-
tion of the trajectories of the magnetization vector M(t), and of
the so-called costate vector k(t), for 0 6 t 6 T [8,13–21]. The desired
gradients are approximated to first order by the x and y compo-
nents of the cross product M(t) � k(t) [16–18]:

dU
dmxðtÞ

¼ MyðtÞkzðtÞ �MzðtÞkyðtÞ; ð1Þ

dU
dmyðtÞ

¼ MzðtÞkxðtÞ �MxðtÞkzðtÞ: ð2Þ

For a spin with offset moff, the effective field vector me(t) is defined as

meðtÞ ¼ ðmxðtÞ; myðtÞ; moff Þt ; ð3Þ

and starting from the initial magnetization vector M(0) = Mi, the
trajectory of the magnetization vector M(t) can be calculated by
solving the Bloch equations

_MðtÞ ¼ 2pmeðtÞ �MðtÞ: ð4Þ

Here, for simplicity we assume that relaxation effects can be ne-
glected, however if necessary they can be taken into account in a
straightforward way [13,21].

If the pulse performance U depends only on the magnetization
vector M(T) at the end of the pulse, the costate vector k(T) is given
by @U/@M(T) [16], i.e. the three components of the costate vector
k(T) = (kx(T),ky(T),kz(T))t are

kxðTÞ ¼
@U

@MxðTÞ
; kyðTÞ ¼

@U
@MyðTÞ

; kzðTÞ ¼
@U

@MzðTÞ
: ð5Þ

For example, if the quality factor is simply the projection of the final
magnetization vector onto a desired target state F, i.e.

Ua ¼ MxðTÞFx þMyðTÞFy þMzðTÞFz; ð6Þ

the final costate vector is simply k(T) = F [16]. On the other hand, if
the quality to reach a target state F is defined as [18]

Ub ¼ 1� a1ðMxðTÞ � FxÞ2 � a2ðMyðTÞ � FyÞ2 � a3ðMzðTÞ

� FzÞ2; ð7Þ

the resulting final costate vector is given by k(T) = �(2
a1(Mx � Fx),2a2(My � Fy),2a3(Mz � Fz))t. Here a1, a2 and a3 represent
the relative weights given to the desired match of the x, y, and z
components of the magnetization vector and the target state.

The equation of motion for the costate vector has the same form
as the Bloch equations (c.f. Eq. (4)) [16–18,21], i.e.

_kðtÞ ¼ 2pmeðtÞ � kðtÞ; ð8Þ

and by propagating k(T) backward in time, we obtain k(t) for
0 6 t 6 T.

Robustness with respect to offset and rf inhomogeneity can be
achieved by averaging the gradients over all offsets moff and rf scal-
ing factors s of interest [13,16]. Starting from an initial pulse with
rf amplitudes mx(t) and my(t), the pulse performance can be opti-
mized by following this averaged gradient. In the simplest ap-
proach, the gradient information can be used in steepest ascent
algorithms, but faster convergence can often be found using conju-
gate gradient or efficient quasi-Newton methods [22] that are also
based on the gradients dU/dmx(t) and dU/dmy(t).

2.2. Optimization of COOP pulses

Now we consider a set of N individual pulses P(j) of duration T
with rf amplitudes mðjÞx ðtÞ and mðjÞy ðtÞ for j 2 {1,2,. . .,N}. For a given
initial state M(1)(0) = M(2)(0) = � � � = M(N)(0) = Mi, the corresponding
N trajectories M(j)(t) of the magnetization vectors under the pulses
P(j) can be calculated for 0 6 t 6 T using the Bloch equations. If the
quality factor U depends only on the final magnetization vectors
M(j)(T), the components of the costate vectors k(j)(T) are given by

kðjÞx ðTÞ ¼
@U

@MðjÞ
x ðTÞ

; kðjÞy ðTÞ ¼
@U

@MðjÞ
y ðTÞ

; kðjÞz ðTÞ ¼
@U

@MðjÞ
z ðTÞ

ð9Þ

and the N trajectories k(j)(t) can be calculated for 0 6 t 6 T using the
equation of motion of the costate vectors in analogy to Eq. (8). The
gradient of the quality factor U with respect to the controls mðjÞx ðtÞ
and mðjÞy ðtÞ is given by the x and y components of the vectors
M(j)(t) � k(j)(t) [16]:

dU

dmðjÞx ðtÞ
¼ MðjÞ

y ðtÞk
ðjÞ
z ðtÞ �MðjÞ

z ðtÞk
ðjÞ
y ðtÞ; ð10Þ

dU

dmðjÞy ðtÞ
¼ MðjÞ

z ðtÞk
ðjÞ
x ðtÞ �MðjÞ

x ðtÞk
ðjÞ
z ðtÞ: ð11Þ

For example, consider the optimization of COOP excitation pulses
with minimal overall phase error. If applied in successive scans,
the real and imaginary parts of the accumulated signal Sx + iSy are
proportional to the x and y components of the average magnetiza-
tion vector

MðTÞ ¼ 1
N

XN

j¼1

MðjÞðTÞ: ð12Þ

The goal is to maximize MxðTÞ and to minimize MyðTÞ in order to
minimize the phase error of the accumulated signal, while MzðTÞ
is irrelevant. This goal can be quantified by

Uc ¼ 1� ð1�MxðTÞÞ2 � aMyðTÞ2; ð13Þ

which is a generalization of the quality factor Ub (c.f. Eq. (7)), where
M(T) is replaced by MðTÞ, with F = (1,0,0)t, a1 = 1, a2 = a, and a3 = 0.
Here, the relative weight given to the deviation of MxðTÞ and MyðTÞ
from the target values Fx = 1 and Fy = 0 can be adjusted by the
parameter a. According to Eq. (9), the costate vectors k(j)(T) are gi-
ven by

kðjÞðTÞ ¼ 2
N
ð1�MxðTÞ;�aMyðTÞ;0Þt ; ð14Þ

which is independent of j, i.e. all costate vectors are identical at the
end of the pulse (k(1)(T) = k(2)(T) = � � � = k(N)(T)) and depend on the
average magnetization vector MðTÞ. However, the back propagation
of the costates under the different pulses P(j) results in different tra-
jectories k(j)(t) for 0 6 t < T.

With the trajectories M(j)(t) and k(j)(t), the gradients (10), (11)
can be efficiently calculated, providing a powerful means for the
simultaneous optimization of a set of mutually compensating
COOP pulses. In the following, illustrative examples will be given,
to demonstrate the COOP approach. Experiments were performed
on Bruker AV 250 and AV III 600 spectrometers using a sample
of �1% H2O in D2O doped with copper sulfate.

3. Examples

3.1. Total elimination of magnetization

As a first illustrative example, we consider the problem of com-
pletely eliminating all components of the average magnetization
vector, i.e. MxðTÞ ¼ MyðTÞ ¼ MzðTÞ ¼ 0 in the absence of B0 gradi-
ents, B1 inhomogeneity and relaxation effects, starting from z mag-
netization Clearly, this cannot be accomplished by a single pulse
and at least two scans are required to achieve this goal. We opti-
mized COOP cycles consisting of two or three individual pulses,
using the quality factor
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Uelim ¼ 1�MxðTÞ2 �MyðTÞ2 �MzðTÞ2: ð15Þ

For the simplest case of a single spin on resonance, the extended
GRAPE algorithm finds the intuitive solution of two rectangular
90� pulses with a relative phase shift of 180�. Similarly, the optimi-
zation of a three-step COOP cycle yields three 90� pulses with phase
differences of 120� and 240� as expected (data not shown), demon-
strating that the algorithm is able to ‘‘rediscover” simple phase cy-
cles. If the elimination of magnetization is desired not only for the
on-resonance case but for a finite range of offsets and limited rf
amplitudes, the optimal solution is not clear a priori. For an offset
range of ±10 kHz and a maximum rf amplitude of 10 kHz we opti-
mized a two-step COOP cycle, consisting of two individual pulses
with a duration of 50 ls each. For each individual pulse a different
random pulse shape was created at the start of the optimization and
no symmetry constraints were imposed. Fig. 1 shows the optimized
pulse shapes, the final magnetization components after each indi-
vidual pulse and the components of the average final magnetization
vector as a function of offset. The two-step COOP cycle efficiently
eliminates the average magnetization vector as expected. Here the
optimal solution consists of two saturation pulses that are identical
up to an overall phase shift of 180�. Each individual saturation pulse
brings the magnetization vector to the transverse plane and hence
eliminates the z component in each scan with high fidelity for the
desired range of offsets. The remaining transverse magnetization
components are then averaged to zero by repeating the saturation
pulse with a phase shift of 180�. This solution is not unexpected
and a single saturation pulse could have been optimized and phase
cycled with the same result. However, initially it was by no means
clear if this is in fact the best possible strategy. As the COOP ap-
proach is not limited to a restricted set of solutions (e.g. pairs of sat-
uration pulses), it is also able to find unexpected solutions if they
exist, as will be shown in the next examples.

3.2. Band-selective excitation pulses

As a second example, we consider band-selective COOP pulses
that excite magnetization in a defined offset range and simulta-
neously eliminate the average magnetization vector in other offset
ranges. We use the quality factor Ub (Eq. (7)) for various
A

C D

Fig. 1. Two-step COOP cycle for the complete elimination of the average magnetization
and a pulse duration of 50 ls. A and B show the phase modulations u(1)(t) and u(2)(t), si
and z components are plotted as solid black, dashed gray and solid gray curves, respect
offset-dependent target states F(moff). Here we consider the exam-
ple where F(moff) = (1,0,0)t for jmoffj 6 2 kHz (the ‘‘pass band”) and
F(moff) = (0,0,0)t for 2 kHz < jmoffj 6 10 kHz (the ‘‘stop band”). The
pulse duration T and the maximum rf amplitude mmax

rf were set to
500 ls and 10 kHz, respectively. In contrast to the first example,
in this case the COOP optimization yields two different pulses that
are not simply related by an overall phase shift (Fig. 2). Fig. 2 also
shows the simulated and experimental final magnetization
components created by the individual pulses and the average mag-
netization vector. While the response of the individual COOP
pulses appears to be erratic, the cancellation of the undesired
terms is almost perfect. An excellent match is found between
experimental (gray) and simulated (black) data.

For comparison, Fig. 3 shows the results of a conventional ap-
proach based on two individually optimized pulses: a broadband
pulse with a target state F1(moff) = (1,0,0)t for jmoffj 6 10 kHz and a
band-selective pulse with F2(moff) = (1,0,0)t for jmoffj 6 2 kHz and
F2(moff) = (�1,0,0)t for 2 kHz jmoffj 6 10 kHz. These pulses also yield
the desired average magnetization profile. Very good suppression
of the x component is achieved by this approach in the stop band.
However, large residual y and z components of the average magne-
tization vector of more than 40% remain in the vicinity of the tran-
sition regions at ±2 kHz (see Fig. 3). In contrast, using the the COOP
approach, the undesired y and z components can be almost com-
pletely suppressed in the pass band, the stop band as well as in
the transition region (c.f. Fig. 2).

Similar results were found for band-selective inversion pulses
and different ranges of pass and stop bands (data not shown). It
is interesting to note that in the case of band-selective inversion
(and complete elimination of the average magnetization vector in
the stop band), the COOP approach resulted in two very similar
pulses with a relative phase shift of 180�. In this case, the target
profile of the average magnetization vector can be approached by
a pulse that inverts the magnetization in the pass band and brings
it into the transverse plane in the stop band. By repeating the pulse
with a phase shift of 180�, all transverse magnetization compo-
nents are perfectly cancelled. Hence in this case, the COOP ap-
proach yields a solution that could also be constructed using a
conventional optimization of a single pulse combined with a phase
cycle. However, it was by no means obvious before that this
E

B

vector M for offsets in the range of ±10 kHz for a constant rf amplitude mrf = 10 kHz
mulated offset-profiles of M(1)(T), M(2)(T) and MðTÞ are drawn in C, D and E. The x, y
ively.
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Fig. 2. Two-step COOP cycle for band-selective excitation and saturation. The rf amplitudes mðjÞrf ðtÞ and phases u(j)(t) for the two COOP pulses are shown in A and B. Simulated
(black, dash-dotted curves) and experimental (gray, solid curves) components of M(1)(T), M(2)(T) and MðTÞ are shown in C.
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approach yields the optimal solution, which is in fact very different
from the naive approach of combining individually optimized
pulses for band-selective and broadband inversion.

3.3. Broadband excitation of x magnetization with minimum phase
error

Here we ask the question of whether the duration of broadband
excitation pulses can be reduced using the COOP approach. In or-
der to avoid phase errors in the resulting spectrum, a single pulse
for broadband excitation of x magnetization is not allowed to cre-
ate significant y components in the desired offset range. In con-
trast, the creation of relatively large y components j MðjÞ

y ðTÞ j by
the individual members of a cycle of COOP excitation pulses is
acceptable, provided j MyðTÞ j is small (and MxðTÞ is large). This
provides additional degrees of freedom in the optimization.

As a concrete example, we consider the optimal excitation of x
magnetization with minimal phase errors in an offset range of
±20 kHz with a maximum rf amplitude of mmax

rf ¼ 17:5 kHz [16–
18] and a robustness with respect to variations of the rf amplitude
of ±5%. For this problem, the duration of efficient optimal control
based pulses could be reduced from 2 ms [16] to 500 ls [17] by
generalizing the algorithm to take rf limit limits into account dur-
ing the optimization. Subsequently, the pulse duration could be re-
duced even further to only 125 ls [18] by using a quality factor
similar to Uc (Eq. (13)) for N = 1 that is better adapted to the prob-
lem of excitation with minimal phase errors than quality factors
based on Ua (Eq. (6)).
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B

Fig. 3. Two conventional pulses that were independently optimized for band-selective and broadband excitation, respectively. The rf amplitudes mrf(t) and phases u(t) for
each indivudual pulse are shown in A and B. Simulated (black, dash-dotted curves) and experimental (gray, solid curves) components of M(1)(T), M(2)(T) and MðTÞ are shown
in C.
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For the same specifications, we optimized a single pulse (N = 1)
and COOP cycles (N > 1) using the quality factor Uc (Eq. (13)). The
numerically determined quality factor Uc (Eq. (13)) with a = 1 of
the single 125 ls long pulse from [18] is Uc = 0.999852. The gradi-
ent of the quality factor for the COOP pulse optimization can be
efficiently approximated to first order using Eqs. (10) and (11),
where k(j)(T) is given by Eq. (14). For example, for a three-step
COOP cycle, a comparable quality factor (Uc = 0.999856) can be
achieved with a reduced duration of only 100 ls of each individual
pulse (see supplementary material). Hence, in this case it is possi-
ble to reduce the duration of excitation pulses by an additional 20%
without loss in pulse performance using the COOP approach. The x
component of the excited average magnetization vector is about
0.99, and the phase error is less than 0.4� for the entire offset range
of 40 kHz.

In order to explore the performance limit of even shorter pulses,
we also optimized single and COOP pulses with a duration of
T = 50 ls, which is only 3.5 times longer than the duration of a hard
90� pulse for an rf amplitude of 17.5 kHz. Fig. 4 shows the achieved
quality factors for a single pulse (N = 1) and for COOP cycles with N
between 2 and 6. The optimized pulses for N = 1, 2, and 3 are
shown in Fig. 5. All pulses have constant amplitude, taking full
advantage of the maximum allowed rf amplitude of
mmax

rf ¼17.5 kHz. The optimal single pulse (N = 1) shown in Fig. 5A
is purely phase-alternating with phases ± p/2. This class of
phase-alternating pulses implies the following symmetry relations
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Fig. 4. Quality factor U for excitation of x magnetization with pulse durations of
T = 50 ls as function of the number of COOP pulses N.
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for the x and y components of the excited magnetization vectors at
offsets ±m [2]:

MxðmÞ ¼ Mxð�mÞ; ð16Þ
MyðmÞ ¼ �Myð�mÞ: ð17Þ

(In additon, Mz(m) = Mz(�m), however this is not relevant here, as Uc

has no explicit Mz dependence, c.f. Eq. (13).) The symmetry relations
for the x and the y components of the final magnetization vectors
match the symmetry of the problem: Maximum Mx(m) is desired
both for positive offsets (between 0 and 20 kHz) and for negative
offsets (between 0 and �20 kHz), and, according to Eq. (16), a large
Mx(m) implies an equally large Mx(�m). In addition, jMyj(m) � 0 is de-
sired both for positive and negative offsets, and, according to Eq.
(17), a small jMyj(m) at frequency m implies an equally small
jMyj(�m).

In contrast to the case N = 1, the individual COOP pulses for
N = 2 shown in Fig. 5B are not phase-alternating but have smooth
phase modulations. However, the phase modulations are not
A

C

B

Fig. 5. Excitation pulses with minimized phase errors with a duration of T = 50 ls: (A) co
(N = 3). For both pulse pairs with ‘‘smooth” phase modulation in B and C, the individual p
independent but are related by phase inversion and an additional
phase shift by p:

uð2ÞðtÞ ¼ �uð1ÞðtÞ þ p; ð18Þ

corresponding to a reflection of the phase around p/2. (In terms of
the x and y components of the rf amplitudes, this relation corre-
sponds to mð2Þx ¼ �mð1Þx and mð2Þy ¼ mð1Þy .) Applying well known princi-
ples of pulse sequence analysis [2], it is straightforward to show
that Eq. (18) implies the following symmetry relations between
the transverse components of the excited magnetization vectors
after the first and second pulse:

Mð2Þ
x ðmÞ ¼ Mð1Þ

x ð�mÞ; ð19Þ
Mð2Þ

y ðmÞ ¼ �Mð1Þ
y ð�mÞ ð20Þ

(and in additon Mð2Þ
z ðmÞ ¼ Mð1Þ

z ð�mÞ). As a direct consequence of Eqs.
(19) and (20), the transverse components of the average magnetiza-
tion vector after the two-step COOP cycle are related by

MxðmÞ ¼ Mxð�mÞ; ð21Þ
MyðmÞ ¼ �Myð�mÞ: ð22Þ

which is analogous to the relations in Eqs. (16) and (17) for a
single phase-alternating pulse and which matches the symmetry
of the problem as discussed above. The symmetry relations for
the average transverse magnetization components (Eqs. (21) and
(22)) can always be realized if the N-step COOP cycle consists of
symmetry-related pulse pairs (with phase relations corresponding
to Eq. (18)) and/or phase-alternating pulses with phases ±p/2. For
example, the three-step COOP cycle consists of one symmetry-re-
lated pulse pair and one phase-alternating pulse (see Fig. 5C). For
N = 4, 5, and 6, we always find two symmetry-related pulse pairs
and an according number of phase-alternating pulses.

Fig. 6 shows the location of the individual and of the average
magnetization vectors in the y-z plane after the three-step COOP
cycle (N = 3) (c.f. Fig. 5C). The points denoted a, b, and c correspond
to offsets of �20 kHz, 0 kHz and 20 kHz, respectively. Figs. 6B and C
illustrate the symmetry relations of Eqs. (16), (17) and of Eqs. (21),
(22). Relatively large y components of up to 40% are found for each
individual pulse, illustrating the additional degrees of freedom
gained by the COOP approach. However, the average magnetization
nventional single pulse, (B) two-step COOP cycle (N = 2), (C) three-step COOP cycle
ulses are symmetry-related by u(j+1)(t) = �u(j)(t) � p which is equvalent to Eq. (18).
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Fig. 6. In A–C, the individual offset-profiles for a three-step COOP cycle (N = 3) from Fig. 5C are shown. The final states of MðjÞ
y ðTÞ and MðjÞ

z ðTÞ within an offset frequency range
of ±20 kHz are displayed, where in each subplot, the offsets �20 kHz, 0 kHz and 20 kHz are indicated by symbols (open circles, squares and triangles) denoted a, b and c,
respectively. For these three offsets, the y and z components of M(1)(T), M(2)(T) and M(3)(T) (open symbols) and of MðTÞ (solid discs) are shown in D, illustrating the
cancellation of phase errors. Subplot E shows the location of the average magnetization vector MðTÞ for the entire offset range of ±20 kHz. For comparison, the location of the
magnetization vector M(T) for the single, conventionally optimized pulse N = 1, c.f. Fig. 5A is shown in F.

120 M. Braun, S.J. Glaser / Journal of Magnetic Resonance 207 (2010) 114–123
vectors are located very close to the x-z plane as shown in Fig. 6E.
In Fig. 6D, the corners of the triangles represent the locations of the
magnetization vectors after the individual pulses and the centers
of the triangles indicate the location of the average magnetization
vectors for offsets �20 kHz (a), 0 kHz (b) and 20 kHz (c), illustrat-
ing the averaging process. For comparison, Fig. 6F also displays
the location of the magnetization after the optimized single pulse
pulse (c.f. Fig. 5A).

A good match is found between the simulated and experimental
performance of the COOP pulses, as demonstrated in Fig. 7, where
the x component and the phase of the average magnetization vec-
tor is shown for the optimized single pulse and for the COOP cycles
Fig. 7. Simulated and experimental offset-profiles for the average magnetization MxðTÞ
N = 3 (c.f. Fig. 5C) and N = 6.
with N = 3 and N = 6. For the single pulse, the excitation efficiency
is below 92% for a large range of offsets, whereas for N = 6, the exci-
tation efficiency approaches 95% for almost the entire offset range.
At the same time, the largest phase error is reduced from about 8�
to 5� at the extreme offsets and from about 3� to less than 1.3� for
offsets between ±18 kHz.

In [18] we conjectured that for a single pulse a duration of
100 ls is a conservative lower limit for achieving better than 95%
excitation efficiency and a phase error of no more than 4� in a rel-
ative bandwidth of Dmoff =mmax

rf ¼ 2:3 and with rf tolerance of ±5%.
With the COOP approach, we were able to push the lower limit
on pulse length below 65 ls for N = 6 (data not shown).
and the phase error p(T) for a single pulse (N = 1, c.f. Fig. 5A) and COOP cycles with



Fig. 9. A single (dashed-dotted gray curves) ICEBERG and a two-step (N = 2) COOP
ICEBERG cycle (solid black curves). For the COOP pulse pair the symmetry relation
from Eq. (18) is approximately fulfilled.
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3.4. Broadband excitation with linear offset dependence of phase

In the previous section the target was to create pulses with off-
set independent phase, i.e. pulses where no phase correction of
first or higher order is necessary. As shown in [23], an even larger
bandwidth can be achieved for so-called ICEBERG pulses that cre-
ate transverse magnetization with a linear offset dependence of
the phase. For example, for a simple rectangular 90� pulse, the
resulting phase is almost linear for a large range of offsets and
can be corrected by first-order phase correction. Fig. 8 shows the
offset profile of the x component of MxðTÞ magnetization and the
residual phase error after first-order phase correction with 2.9�/
kHz for a rectangular 14.29 ls 90� pulse, corresponding to an rf
amplitude of mrf = 17.5 kHz. Over a range of ±50 kHz, the phase er-
ror is less than about 5�. However, for offset frequencies beyond
±30 kHz the excitation efficiency decreases rapidly (see Fig. 9).

We optimized a single pulse and a two-step COOP cycle (N = 2)
with a duration of 60 ls each, a maximum rf amplitude 17.5 kHz,
5% rf inhomogeneity for a bandwidth of ±50 kHz allowing for the
same first-order phase correction of 2.9�/kHz as for the simple rect-
angular pulse. Simulated and experimental results are displayed in
Fig. 8. The performance of the optimized single pulse is signifi-
cantly better than the simple rectangular pulse with larger trans-
verse magnetization of more than 90% (except for offsets near
�50 kHz where the efficiency drops to about 80%) compared to
45% and comparable phase errors. However, the performance of
the optimized COOP pulses shows a significant further improve-
ment with an excitation efficiency of more than than 95% and
phase errors of less than 2.4� over the entire offset range of
±50 kHz.

3.5. COOP WET pulses

The final example demonstrating the power of the COOP ap-
proach is motivated by the WET (water suppression enhanced
through T1 effects) solvent suppression sequence [24,25]. In order
to also suppress solvent signals in regions away from the center
of the rf coil and therefore experiencing smaller rf amplitudes,
pulses are required that act as broadband 90� pulses for the full rf
amplitude but that do not excite the solvent signal in regions of
the sample where the rf amplitude is significantly scaled down.
One solution is based on a composite pulse, such as the
A B

Fig. 8. Offset profiles for M0
x and phase deviation D/ for a single rectangular pulse (A),

Fig. 9) and a two-step COOP cycle (N = 2) (C, c.f. solid curves in Fig. 9). M0
x is the x-compon

2.9�/kHz. Solid gray and dash-dotted black curves represent experimental and simulate
90�x90�y90��x90��y pulse [25,26], which is applied in every scan. How-
ever, in multi-scan experiments, improved performance was found
if in three out of four scans a simple rectangular 90

�

x pulse is used
and in one out of four scans a simple rectangular 270

�

�x pulse
[25]. This set of four pulses (90

�

x, 90
�

x, 90
�

x, 270
�

�x), which are applied
in successive scans, was derived in [25] based on linear response
theory, which however is strictly valid only for flip angles
approaching zero. In contrast, the COOP approach introduced here
allows us to develop an optimized cycle of COOP pulses for this task,
taking into account the full non-linear spins dynamics.

To illustrate this, we optimized COOP pulses with an excitation
pattern [19] as a function of offset moff and rf scaling factor s that is
adapted to the problem (see Fig. 10). For rf scaling factors in the
range 0.95 6 s 6 1.05, the goal is to excite x magnetization in an
offset range of ±5 kHz with minimal phase error. For rf scaling fac-
tors in the range 0 6 s 6 0.6, the goal is to minimize the transverse
component M? ¼ ðM2

x þM2
yÞ

1=2 of the average magnetization vec-
tor for a reduced range of offset (near the solvent resonance) of
±500 Hz. We assume initial z magnetization and a maximum nom-
inal rf amplitude of mmax

rf ¼ 20 kHz.
Figs. 10 and 11 show the performance of an optimized two-step

COOP cycle (N = 2) with a duration T = 200 ls for each of the two
individual COOP pulses. For comparison, we also show the perfor-
mance of the composite pulse 90

�

x90
�

y90
�

�x90
�

�y [26], of a sequence
based on (90

�

x, 90
�

x, 90
�

x, 270
�

�x) [25] and an optimized individual
pulse (N = 1).
C

an optimized individual ICEBERG pulse [23] with N = 1 (B, c.f. dash-dotted curve in
ent of MðTÞ and D/ is the residual phase error after a first-order phase correction of

d data.



A B

C D

Fig. 10. Comparison of the average transverse magnetization as a function of offset moff and rf scaling s for a two-step cycle of COOP WET pulses (D, N = 2) with the
90�x90�y90��x90��y composite pulse (A, [26]), the four-scan sequence based on 90

�

x; 90
�

x ; 90
�

x; 270
�

�x (B, [25]) and an optimized individual pulse (C, N = 1). The areas for which
optimal excitation and optimal suppression of transverse magnetization are desired are indicated by black and white dashed rectangles.

Fig. 11. Slices from Fig. 10A (dotted), B (dash-dotted), C (dashed) and D (solid
curve) for the on-resonance case. The gray squares and black discs represent
experimental data for the conventionally optimized pulse and the two-step COOP
WET cycle from Fig. 10C and D, respectively.
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4. Discussion and conclusion

Here, we introduced the concept of simultaneously optimized
pulses that act in a cooperative way, compensating each others
imperfections. Although for simplicity only examples involving
uncoupled spins were considered, it is important to note that the
COOP approach can also be applied to coupled spin systems. With
the help of generalized optimal control based algorithms, such as
the presented variant of the GRAPE (gradient ascent pulse engi-
neering) algorithm, COOP pulses can be efficiently optimized.
Although the COOP approach is not limited to multi-scan exper-
iments, here we focussed on applications where different members
of a COOP cycle are used in different scans. In such multi-scan
experiments, the COOP approach can be viewed as complementing
and/or generalizing phase cycling [9–12] and difference spectros-
copy. In conventional phase cycling, identical pulses are applied
in each scan, up to an overall phase shift. In Section 3.1, the optimal
COOP cycle also consisted of pulses that were identical up to an
overall phase shift. Hence, it is possible to automatically generate
phase cycles using the COOP approach. However, it is important
to point out that here it was not possible to achieve the target of
the optimization by considering coherence order pathways alone.
Hence, the COOP solution relied on the simultaneous optimization
of specific pulse shapes (saturation pulses) in combination with the
resulting simple phase cycle. As demonstrated in Sections
3.2,3.3,3.4,3.5, COOP pulses are in general not simply related by
overall phase shifts. In the presented COOP examples, a constant
receiver phase was assumed. However, it is straightforward to lift
this restriction by adding one additional control for the receiver
phase for increased flexibility as in conventional phase cycles or
in difference spectroscopy. In conventional difference spectros-
copy, often different pulses are applied in successive scans. How-
ever, these pulses are typically either simple rectangular pulses
or are optimized for each individual scan, not taking advantage
of the full flexibility of the COOP approach introduced here. For
example, this was illustrated in Section 3.5 for the problem of sol-
vent suppression.
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Optimal control based techniques for the efficient optimization
of complex COOP pulses open new avenues for pulse sequence
optimization. The goal of the presented examples was to illustrate
the basic concept and to point out potential applications of COOP
pulses. For example, in Section 3.5 it was demonstrated that the
approach may be useful for water suppression techniques such
as WET. However, for practical solvent suppression, it is necessary
to adjust the design criteria for the optimized COOP pulses, which
is beyond the scope of the present conceptual paper. It is also
important to point out that the presented algorithm for the optimi-
zation of COOP pulses can be generalized in a straightforward way
to include relaxation effects [13,21]. We hope that the presented
COOP approach will find practical applications in NMR spectros-
copy and imaging.

Pulse shapes of the discussed examples are available in elec-
tronic form in the supplementary material and at http://
www.org.chemie.tu-muenchen.de/glaser/Downloads.html.
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